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SPECTRAL METHODS FOR PERIODIC INITIAL VALUE PROBLEMS 
WITH NONSMOOTH DATA 

PRAVIR K. DUTT AND A. K. SINGH 

ABSTRACT. In this paper we consider hyperbolic initial value problems subject 
to periodic boundary conditions with nonsmooth data. We show that if we filter 
the data and solve the problem by the Galerkin-Collocation method, recently 
proposed by us, then we can recover pointwise values with spectral accuracy, 
provided that the actual solution is piecewise smooth. For this we have to 
perform a local smoothing of the computed solution. 

1. INTRODUCTION 

Spectral methods give very highly accurate approximations to hyperbolic 
problems with smooth solutions. The naive use of spectral methods on hy- 
perbolic problems with discontinuous solutions, however, produces oscillatory 
numerical results. The oscillations arising directly from the discontinuity have 
a Gibbs-like high-frequency character. It has been known for some time that 
these oscillations are in themselves not insurmountable but contain sufficient 
information to permit reconstruction of the actual solution. This is achieved 
by a filtering of the computed values. 

A detailed examination of the effect of filtering for linear systems of hy- 
perbolic equations with periodic boundary conditions and discontinuous initial 
data was made by Majda, McDonnough, and Osher [6]. They showed that for 
problems in one space dimension it was possible to achieve a convergence rate 
of infinite order by a proper filtering of the intial conditions and also by apply- 
ing a filtering during derivative evaluations. However, in two space dimensions 
this infinite order of accuracy can be obtained only in a domain which excludes 
the region of influence, and this region spreads linearly with time. Moreover, it 
is not clear as to how to handle problems where there are discontinuities in the 
forcing function. 

As opposed to global smoothing, one can postprocess the solution obtained 
by standard Collocation or Galerkin methods by a local smoothing in order 
to recover spectral accuracy. The idea is based on the observation that while 
the pointwise convergence of a high-order polynomial approximation to a 
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discontinuous solution is very slow, the convergence in a weighted mean is very 
fast. Local smoothing will be carried out by a convolution in physical space 
with a localized function and hence by a weighted mean which approximates 
exceedingly well the exact values of the solution. 

From a mathematical point of view, convergence in the mean can be mea- 
sured in terms of a Sobolev norm of negative order. It can be shown that the er- 
ror between the computed and exact solution in a negative Sobolev norm decays 
at a rate which depends only on the order of the norm. The idea was originally 
developed by Abarbanel, Gottlieb, and Tadmor [1], Gottlieb and Tadmor [5], 
and Mercier [7]. In their formulation the approximate solution is obtained by 
first solving a system of ordinary differential equations arising from either the 
Galerkin or Collocation method, and then postprocessing is applied to the com- 
puted solution of this semidiscrete system of equations. We are not aware as to 
how this procedure would deal with problems in which there are discontinuities 
in the forcing function also, instead of just in the initial data. 

In [3, 4] we proposed an alternative formulation for solving hyperbolic par- 
tial differential equations which we shall refer to as the Galerkin-Collocation 
method; this method is spectral in both space and time. In this approach the 
partial differential equation and initial and boundary conditions are collocated 
at an overdetermined set of points, and the approximate solution is chosen to 
be the least squares solution to the overdetermined set of equations thus ob- 
tained. It has been proved that for problems with smooth solutions the error 
decays spectrally in space and time, and computational results for this have 
been provided in [4]. In this paper we show that for hyperbolic problems with 
periodic boundary conditions it is possible to recover pointwise values with 
spectral accuracy using the Galerkin-Collocation method, even when there are 
discontinuities in the initial data and forcing function, as long as the actual 
solution is piecewise smooth. In another paper we intend to publish, we hope 
to extend the theory developed here to general initial-boundary value problems 
using Legendre and Chebyshev expansions in space and time. 

We now outline the contents of this paper. In ?2 we define the Sobolev 
spaces we shall work in and describe the energy estimates in negative Sobolev 
norms which are needed in this paper. In ?3 we briefly describe the Galerkin- 
Collocation method and prove that the error between the approximate solution 
computed by this method and the actual solution in a negative Sobolev norm 
decays at a rate which depends only on the order of the norm. In ?4 we explain 
the filtering procedure proposed by Abarbanel, Gottlieb, and Tadmor and show 
how it can be applied to the approximate solution we obtain by the Galerkin- 
Collocation method to recover pointwise values of the solution with spectral ac- 
curacy. Finally in ?5 we present computational results for the proposed method. 

2. ENERGY ESTIMATES FOR HYPERBOLIC INITIAL VALUE PROBLEMS 

WITH PERIODIC BOUNDARIES 

We consider hyperbolic initial value problems with periodic boundary con- 
ditions. Hereafter, x denotes the vector x = (xI, x2, ... , Xd). 

Let Q = (0, 27r)d be the space domain and J = (-1, 1) be the time interval 
we are considering. Consider the initial value problem (IVP) 
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d 

(2.1) Lu=ut-EAiu i-Bu= for (x,t)EQxJ, 

u=f for(x,t)EQx{-l}. 

Here, u is a vector-valued function with values in RP and Ai, B are matrix- 
valued functions. Moreover, Ai, B are smooth functions of x and t and 
periodic in xj with period 27r, for all j = 1, ..., d, and f and F are 
periodic in each space coordinate with the same period but are not necessarily 
smooth. 

Before we proceed to describe our numerical method and prove its conver- 
gence, we need to review some a priori energy estimates which have been proved 
for solutions of the system (2.1). The interested reader is referred to [8, 9] for 
details. 

Let u and v be vector-valued functions of x and t and 27r-periodic in 
each space direction. Then we denote 

(u, =|1/|x u*v dx dt and IluIJojxj = (I U12 dx dt) 
W xJ QxJ 

Here, lul denotes the Euclidean norm of u if u is a vector and JAl denotes 
the induced matrix norm if A is a matrix. Similarly, we denote 

/ \ ~~~~~~~~~1/2 

IIUIIsQxJ = ( || E IDxDf8U12dxdt 1 
\ XJ lal+fl<s 

where a = (avI, a2,..., ad) is a multi-index and Dxau = DxI .. Dxdu. In the 
same way we define 

(u, v)X {?1l = l u v dx and luII0,j x1{?i} =In 1 IU12 dx) 
Let 

/ ) ~~~~~~~1/2 

llull5,QX{? i I lDxau12 dx (nx{ + 1} Ijajl 5 

where a is a multi-index as above. 
We can now state the a priori energy estimates conveniently in terms of the 

Sobolev norms we have just defined. Let V/ be the solution of the hyperbolic 
IVP with periodic boundary conditions 

(2.2a) Li = q for (x, t) E K2x J, 

(2.2b) g = 0 for (x, t) E Q x {-1}, 

where q and 0 are smooth functions and periodic in space. Then for all inte- 
gers s > 0 there exists a constant Cs, which depends only on the smoothness 
properties of Ai, B such that the estimate 

(2.3) IIvIISQXJ + Ikt'II5,Q{i} < CS(IIIIISxQJ + II0IIS4nX{-1}) 
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holds. Henceforth we shall use C and Cs as generic constants. Next, we need 
to state a version of (2.3) for negative Sobolev norms. 

Let w be a function of x and t which is periodic in space. Let H = {q: X 
is a smooth function of x and t which is periodic in x and has compact 
support in t}. We define 

11w1_S QXJ -= sup I(w, X)nxJI 
qSEH I10I1s,Q2xJ 

Then H-s, x j is defined to be the completion of H with respect to the above 
norm. Similarly, we define 

11 w 11 -sxI} = csup 
I w, kx 

{- I 

With these definitions we can now state the energy estimates in "negative" 
Sobolev norms. For any s > 0 there exists a constant Cs, which depends 
only on the smoothness properties of Ai, B, such that 

(2.4) IIV/II-SQXj + II/VII-SQX{1} < CS(II0II-SXQ + II0II-SX{-1})1 
where V/ is the solution of (2.2), for all 0 and 0 . For the sake of completeness 
we shall provide the proof of (2.4) below, which is very similar to an analogous 
result proved by Rauch in [8]. 

We consider the following hyperbolic IVP with periodic boundary conditions: 
d 

(2.5a) L*w = -wt + (ATw)x - BTw =X for (x, t) E Q X J, 
i=1 

(2.5b) w=,u for (x, t) E Q x{1}, 

which is the adjoint of (2.2). Notice that for this problem we let time run 
backwards. The following energy estimate is then valid for the solution w of 
the adjoint problem: 

For every s > 0 there exists a constant Cs which depends only on the 
smoothness properties of Ai, B such that 

(2.6) IIW11SQXJ + IIWIISQX{-1} < CS(IIXIIS,QXj + II/IIsXQ{1}) 
holds. 

Let y, be the solution of (2.2). An integration by parts yields 

(2.7) (V/p L*W)nxj = (Lyi, w)nxj + (V. w)Qx{-1} - (VI, w)Qx{1}, 

since the integrands are periodic in space. 
Let w be the solution of the adjoint IVP with periodic boundary conditions 

(2.8a) L*w=X for (x,t) EQxJ, 

(2.8b) w=O for(x,t)EQx{1}. 

Then by (2.7) we have 

(2.9) I(vE X)QXjI < IILVIII{s,Qxj x IIWIIsa2xJ + |IIVII-s4aX{-1} X IIWIIS4QX{-1} 

But using the estimate (2.6) we have 

IIWIISaXJ + IIWIIS4QX{-1} < CS11X11SQXJ, 
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and this together with (2.9) gives 

(2.10) J(V, X)nxjI ? Cs(JJLVJsQxj + IlV'II-sQx{-i}) X IIXJIsQxJ. 
Thus, from (2.10) we obtain 

(2.11) IIVfII-sQxJ < Cs(ILVijJ-sQxj + IIvlI-JSQx{-1}). 
Next, let w be the solution of the adjoint IVP with periodic boundary condi- 
tions 

(2.12a) L*w=0 for(x,t)EQxJ, 

(2.12b) w=js for(x,t)EQx{1}. 

Then (2.7) takes the form 

(2.13) (V/' ju)Qx{1} = (Ly , w)nxj + (V/, w)Qx1{_1, 
and by (2.6) the estimate 

(2.14) J1Wf1SQXJ + JjWfjSQX{-1} < CSII)IIS'QX{1} 
is valid. 

Now (2.13) and (2.14) give 

t(VI, i)Qx1{1} < Cs(ILy/II-s,nxj + IIWVII-s,0x{-1}) X Itt1s4QX{1} 5 

from which we obtain 

(2.15) IIVII-s,1x{i} < Cs(Ly/II-s,nxj + IIVIIts,0x{ix{}). 
Combining (2.1 1) and (2.15), we get (2.4). 

3. ERROR ESTIMATES FOR BLENDED FOURIER-LEGENDRE METHODS 
FOR PERIODIC PROBLEMS WITH NONSMOOTH DATA 

Henceforth we shall take Q = (0, 27r), since the results we state carry over to 
the general case Q = (0, 271)d in a straightforward manner. We now introduce 
some notation. For each integer N we denote by rIN the space of algebraic 
polynomials in the variable t of degree up to N. For each integer M we 
denote by SM the space 

SM = span{eikxl - M < k < M}. 

Then we define the space VM, N as the tensor product 
f ~N M 

VM =N 0: 0 (X t)- = E E amneimxLn(t)}t 
n=O m=-M 

where Ln(t) is the Legendre polynomial of degree n. Henceforth we shall 
assume that there exists a constant A such that 

1/ < M/N < A 

For any function w periodic in x, which also belongs to L2(S2x J) , let pM, NW 
denote the projection of w into (VMN)p, i.e., 

N M 00 00 

pMNWZ=E E wmneimxLn(t), wherew=Z: E wmneimxLn(t)- 
n=O m=-M n=O m=-oo 
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Henceforth we shall denote PM, Nw by TM, N. 

The following results are well known [2, p. 293]. If w E HkQXJ, then 

(3.1) ||W _ TMN11 N Q < CN k ||WI|k,QxJ. 

Moreover, 

(3.2) ||wM'Nllo QxJ < IWIIoQxj. 

Also we have 

(3.3) 11~IW - W MN 
I1'QxJ 

< CN 21k 
IIWIlk, QxJS 

for all 0 < / < k. Next, we introduce the norm 

I Iw I a nxj = max ( esssup ID Dt8wi'. 
a+,8<s (x,t)E2xJ/ 

Then we have 

(3.4) IW1 _TMw - W M 1N ll QxJ < CN21 kIIwIIk,o,QxJ, 

for all 0 < / < k. 
If s(x) is a periodic function belonging to L2(Q), we define 

M 

pM,0S= E smeimx=yM, 
m=-M 

where s(x) = Zn smeimx 

Similarly, if h(t) E L2(J), we define 
N 00 

PO, Nh = E hnLn(t) = h , where h(t) = ZhnLn(t). 
n=O n=O 

We have results similar to (3.1)-(3.3) for the above. Let 
A = pM- 1,N1A B l,N-1 pM- ,N - 1B 

F2M-1,2N -I p2M-1,2N- 1F f2Ml- = p2M-lOf. 

We define the differential operator 
MN -M1,N-1 -M- 1 N- I L 'W = Wt-A 1,N w - B - W. 

We choose as our approximate solution 
N M 

VMN E (VMN)P 0: b(X, t) = Z amneimxLn(t), amm E RPI, 
n=O m=-M 

which minimizes 

arMN(WMN) 

| Lm NwMN F2M-1,2N- 112d dt 

(3.5) 
P1' 

+ |j |WMM'N(X,-1)- fM- I(X) 12 dx 
QX{-1} 

over all wM, N E (VM, N)P. The above problem reduces to obtaining a least 
squares solution to an overdetermined set of equations obtained by collocating 
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the modified equation LM, NWM, N = F2M 1X 2N I and the initial conditions at 
an overdetermined set of points. We briefly explain this. 

Let Xe" = 7ri/M, 0 < i < 2M- 1, and let {1jN}j=O...N be the Gauss- 
Lobatto-Legendre points with ro = -1 and TN = 1 . Notice that 

(LMNwMN _ F2M-1,2N-1) E(2M-i,2N-l)P 

and 
(WM, N(X _) 2M 1) E (S2m-l)p. 

Hence we have that 

(3.6) 
2N 2M-1 

a (W )=EN ajNj(Lm , NWMMN _ F2M-1 ,2N-1) 2M 2N 2 

j=O i=O 

4M-1 

+ E fly 1WM N M, -1) _ ?M- l(,XM)12 
i=O 

where a MN and fly are appropriate constants obtained from the Gauss- 
Lobatto integration formulae. Thus, obtaining a solution to (3.5) is equivalent 
to solving a least squares problem. It has been shown that if we choose our 
approximate solution VM, N such that it minimizes the modified functional 

2N 4M-1 

MN(WMN) Z M N(LwMN _ F2M- ,2N-I)( 2M 2zN) 2 

j=O i=O 

4M-1 

+ f I lWM,(ZM,-o- (xi2M)12, 

i=O 

then we would be committing, in addition, only a spectrally small further error. 
There is therefore no need to filter the coefficients A and B in practice. The 
interested reader is referred to [4] for further details. We are interested in 
another aspect of this minimization procedure. Our approximate solution VM, N 

is the unique polynomial belonging to (VM, N)P which satisfies 

Jj (LMNVM, N _F2M- 1,2N-l)*(LMNyMN) dxdt 

(3.7) 
X 

QX{-1} M, 

for all yMN E 

(VMN)P. 

We shall now use the above relation to prove that 

d ILM, NVM, N - F2M- 
,2N-?sn < CsN1-s 

and 

IIVM,N _ fM11 j {S Qx1} < CSNl-s 

for any s > 1 . In addition to this, we shall also prove 

ILM, NU F2M- ,2N-1 j Cs-s 
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and 
Ilu - fml I-s,Qx{_1} < CN-5. 

With these results established, we can prove Theorem 1, and the reader is ad- 
vised to proceed directly to the theorem at the end of this section and continue 
his perusal of how these results are established only afterwards. 

We first need to establish an upper bound on fM, N(VM, N) . Let WMN(X, t) 

= 0. Then 

(3.8) MN(WMN) < F2M-1, 2N-1112 
2 72M-11 2 

(3.8) M M ?IEI xJ + hi +I Ux{-1' 

by virtue of (3.2). Hence we can conclude that 

(3.9) 6XMN(VM, N) < C. 

To estimate IlLM, NVM, N _ F2M- I,2N- 
I 

J, we need to bound 

I (Lm M 
, 

q)QXJl for 0 E H. 

Consider the periodic IVP 

(3.1Oa) LMNY = q for (x, t) E Q E J, 

(3. lOb) V = 0 for (x, t) E Q x {-1}. 

Then V is a smooth function, and using estimate (2.3), we have 

(3.11) IkrII5,XiJ < CS? 011S'QXJ 
where Cs is a constant which depends only on the smoothness of the coefficients 
of the modified IVP and hence of the original IVP. 

Let QM N be the projection operator that maps functions belonging to H n 
Hl,QXj into VM,N defined as: 

QMNW is the unique element of VM, 
N such that 

11W _ QM'NWIi, QxJ = inf 11W _SM|N 1, QxJ. 
SM, NE VM, N 

Then it is known that 

(3.12) 11w _ QMNWI1i QxJ < CN1sIIwIIsQxj. 

Let @MN = QM VI. Now 

(LM , NVM, N 
- 

F2M- , 2N-1 )Qx 

= (LMNVM,N _ F2M-1,2N-1 LM NV)U 

= (L M,NvM,N _ F2M-1 2N-1 LM, N@MN) 

+ (LmvNMN _ F2M- 1,2N-, LMN(V _ MN))j. 

But by (3.7), 

(LM, NVM, N _ F2M-1, 2N-1 LM, N1M, NfQ 

+ (vM N 72M-1 MN)Q 1 = 0 
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Now since V = 0 for (x, t) E Q x {-1I}, we may write 

(vM N - fM1 @MN)1{}_11 = (VMN - 72- @M N - 

Hence we can conclude that 

,NVM, N _ F2M-1 ,2N-1 

(Lm~ v - ,q)x 

NM, N -2M-1 2MN- 
(313 V V V -F V 

Now using (3.12), we can conclude that 

IILM N(/ _ - MN)NIIo,0Xj < CN IIWIsnxj- 

And applying (3.1 1), we may write 

(3.14) IILM N(yI_ - MN)I|o QXJ < CN? S|||sQxj 

But 

(Lm, NVM, N _ F2M-1, 2N- ILM, N(_ M,N)) -lM 2 

(3.15) < IILM N(y _ - MN)IIo QXJ X ILMNM V F 2M-1 2N-IXJ 

< CsNl-sjj5jjs,Qxj, 

by (3.9) and (3.14). 
Next, we estimate 

I(VMN - 
-fM M1 @MN - 

From (3.9) we have that 

(3.16) IIVM,N _ ?M_ llo Qx-1_} < C. 

Now 
jjlIMN- 

_ yj0Qx-1_1 < CjjlM, ' -Wj1,QXJ 

by the trace theorem; and so by (3.12) we obtain 

11I@MN - y/jIjoQX,{1-} < CNl-SIkIIsnxj. 

Using estimate (3.1 1) once again, we conclude that 

(3.17) I@MN _ ioQX1{-1} < CNl-Sjjqjjs,Qxj. 

Hence, applying (3.16) and (3.17), we get 

(3.18) M , M, - VX)QX{-1}t < CsNlSIIjIjs,Qxj. 
Combining (3.13), (3.15), and (3.18), we obtain 

I(LM, NVMN _ F2M- 1, 2N- I )xj < CsNl-sII IsQxj, 

and this gives us the required estimate 

(3.19) IILM, NVM, N F2M- 1,?2N-I < CN'-. 

Next, we estimate 
11VN - ?Mr 

-If- 
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Consider the periodic IVP 

(3.20a) LMNY = 0 for (x, t) E Q x J. 

(3.20b) =,u for(x,t)eQxf{-1}. 
Then V is a smooth function, and using estimate (2.3), we have 

(3.21) IIvIIQXJ < CSIIMIISQX{-1}- 
Let MN = QMN. Now 

MN _ 72M-1 = (vMN_ - 72M-1 @M)N){1} 

+ (VM -N 72M-1 - N 

But by (3.7), 

(LM,NVM,N _F2M-1,2N-1 LM,N@MN)hXJ + (VMN _7-2M-1 @MN) {} = 0 

And since LM Ny = 0 for (x, t) E Q x J, we may write 

(LMNvM,N _ F2M-1,2N-l LMN@MN) Xj 

= (LM,NvM,N _ F2M-1, 2N-1 LM N(@MN - 

Hence we can conclude that 

(vMN - 2M-1 / 

(3.22) = (vMN - _ 72M-1 - ) 

+ (LM N M, N - F2M-1, 2N-I LM, N ( _M, N) a 

Thus, we can show 

(3.23) IIVM,N _ f2M-1 IISQx-1} < CsN1'- 

using (3.22) and the arguments employed earlier. 
We now need to estimate 

Ilm , NU_ F2M-1, 2N-1 2 

We know that u satisfies Ut - Au, - Bu = F in the sense of distributions. 
Accordingly, we may write 

LM, NU 2M-1, 2N-I . (LM Nu-Lu)-(F -F) 
(3.24) -M-1I N-i - M- 1 N-i -2M- 1 2N-1I 

-(A -A)u -(B - B)u-(F - F). 

Now by (3.4), 

(3.25) IIA _A IM-,N-I 
I XJ < 

CsN-sIIAII3sooQxJ 
and so 

(3.26) -IjM-1 ,N-1IIS .QxJ < C||A||35,ooQxJ, 

for M and N large enough. Let us show how to estimate the various terms 
in (3.24). It is known [2, p. 431] that the projection operator has the property 
that 

(3.27) lIE-F 
2M-1 2N-1 1s4nxJ < CN-sIIFII0,Qxj. 

-M- B N-l 
Next, we shall estimate II (B -B ) uI I-, a xj . For this we need a lemma. 
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Lemma 1. Let A e HS,O,QXJ and v E H-S,QXJ Then AV E H-S,QXj and 

(3.28) IIAvII-saxj < CsJJAJlsoxj x |IvJJ-sQxj. 
Proof. We have 

(AV, I )QXJ = (v, A*q)QXj, 

by definition. Hence, 

j(Av, q$)Qxjj _(v, A*O)QxjI _ I(v A A*q)Qxjj IIA*bIIsQxj 

IkkIsI,QXiJ II0IIsQXJ IIA*kIIsQxj II'kIIS2XJ 

And this gives 

I( ), 
OEH 11011sxXJ 

Now it is easy to see that 

supIIXI QJJA0~j < C511AIIJQJs,0x. 
qEH 11II11s,4QxJ 

This gives us the required result. [I 

Thus, we obtain 

(11B - B i N"l)uIJsQxj ? CsIIB - B Ils, , QxJ X lIUII-sQxJ. 

But 

IIII-s,(axJ < IIUIIOQxj and IIB-Im-1sN-15 Q XJ < 
CsN-SIIBII3sooQxJ 

Hence, we obtain 

(3.29) 11 (B -B )UIISooXj < CSN-s. 

Next, we estimate IIuJJ-sQxj. Let 0 E H. Then (us, q)QXJ = -(u, X)QXJ 
since both u and q are periodic in x. Hence, 

(uX, 0uXJi lKu, OX)nxil 

II011sQXJ II01ISJ2XJ 

But IIqXII(s-1),QxJ ? 1IkIL0,axj. And so we can conclude that 

sup K(U, O)QxjI < sup (U OX)OXil 
qEH 1101sI,QXJ OEH 110x 1s-1,QXJ 

which gives us 

(3.30) IIUXII-SXJ < IIUII-S+1iQXJ. 

But 

(3.31) IIUII-S+1,QXJ < IIUIIoSX. 

And so by the lemma just proved we get 

(3.22) II(AA _)x s, QXJ < CSN - 

Combining all these estimates, we get the required result 

(3.33) IILM, NUF2M-1, 2N- IIsxj < CsN-s. 

Also we have [2, p. 432] 

(3.34) Ilu - 7 s2Mi I-sQx-11 < CN-s. 

We can now prove our main theorem. 
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Theorem 1. Let vM, N be the solution obtained by minimizing M' N(WM, N) 
as described in (3.5). Then for all s > 0 the estimate 

(3.35) IU - VMNI_S ,1x{1} + I|U - VMN|is QxJ < CsNl s 

holds. 

Proof. We have by (3.19) that 

ILM ,NVM, N _ F2M- ,2N-l1 1 
2J < CsN-s. 

Moreover, by (3.33) we know that 

IILMN-F2M-1 ,2N-11lfxs<CN- 
IILm ,NU _ 

F2M 
1,2 

III-s,axj ? CsNl-s. 
Using the triangle inequality, we obtain 

(3.36) IILMN(U - VMN)1_snXj < CsN1-. 

Finally, we have 

I1U - VMNIISQx11} < I1U _ 7f2M l11sQXj-1 

(3.37) + 112M - VMNIIsxl{-1 } 

< CsNl-s 

using (3.23) and (3.34). Therefore, using estimate (2.4) along with (3.36) and 
(3.37), we conclude that 

11U _ 
VMNI-s,nx{l} + 1jU 

_ VM|NI-s,nxJ < CsN 5. Q 

4. RECOVERING POINTWISE VALUES WITH SPECTRAL ACCURACY 

In this section we briefly describe how the local smoothing proposed by Abar- 
banel, Gottlieb, and Tadmor can be used to recover pointwise values with spec- 
tral accuracy at any point in a neighborhood of which the actual solution is 
smooth. If we wish to recover the values at t = 1 , the local smoothing is partic- 
ularly simple. Suppose we wish to obtain the value of the solution at the point 
(xo, 1). We assume that there exists a neighborhood 

J = {x: Ix - xoI < 5} 
in which the actual solution u(x, t) is smooth. Let p(x) be a COj? function 
with support in the set J and such that p is nonnegative everywhere and 
p(xo) = 1. Choose K = MgI with 0 < 11 < 1, and let DK(4) denote the 
Dirichlet kernel 

=fsin((2K +1)~/2) D()= E eijl= sin(4/2) mr 
j=-K 2K +1, = 2mir. 

Then, to obtain the regularized version of vMN at (xo, 1), we define 

(4.1) Rv MN(xo, 1) = 2+ DK(xo-x)p(x)vMN(x, l) dx. 

It has been proved in [2, p. 433] that if 

I|u-VMN1K_, x{i} < CsM 1, 
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then 

(4.2) tu(xo, 1) -|RvMN(Xo, 1)? < C(I + logM)Ms-l + C2M-s+l+fis, 
where the constants C1 and C2 depend upon the Sobolev norms of p and u 
over the interval J. A balance of the errors is achieved by putting fi = 1/2, 
in which case we obtain 

IU(X0,5 1) -RV M N (Xo 1I=(M-sl2+ 1) 

which proves that u(xo, 1) can be approximated with spectral accuracy starting 
from the knowledge of the Galerkin-Collocation approximation vM N* 

Suppose now that we wish to recover the value of the solution at an interior 
point (xo, to). We assume that u(x, t) is smooth in the set 0, where 

O = { (x, t): x - x0| < a, It -to| < E}. 

Let p(x) be a C0 function with support in the set J = {x: Ix - xol < d}, 
which is nonnegative everywhere and such that p(xo) = 1. Similarly, let q(t) 
be a C0 function with support in the set K = {t: It - toI < e}, which is 
nonnegative everywhere and satisfying ul(to) = 1. Choose K = Mfl and L = 
NY with 0 < 1, y < 1/2. Let DK(4) denote the Dirichlet kernel and EL(T, to) 
denote the Legendre kernel 

L 

EL(T5, To) = >(j + 1/2)Lj((T)Lj(To). 
1=o 

Then, to obtain the regularized values of VM, N at (xo, to), we define 

RvM N(xo, 1) = -|J DK(xo-x)EL(t, to)p(x),i(t)vMN(x t)dxdt. 
2Xt QXJ 

Once more it can be shown that RVM, N(Xo, to) approximates u(xo, to) with 
spectral accuracy, and an optimal balance of the errors is obtained by choosing 
6=y = 1/3. 

5. COMPUTATIONAL RESULTS 

In this section we demonstrate the efficiency of the method proposed in this 
paper. 

Example 1. Consider the problem 

'Ut -a(x, t)U - b(x, t)U =F(x, t) 
subject to periodic boundary condition U(O, t) = U(27r, t) and initial con- 
dition U(x, -1) = g(x). We assume that g(x) has a discontinuity in its 
derivative. 

Case I. Consider 

U(x, t) = (+ t)t +sin(x),. 0 < X< 7t, 

( ' ) {(1 + t)t - sin(x) , 7n < x < 27t 

and take a(x, t) = 0.5 and b(x, t) = 0.0. 
Case II. Consider 

U(x5 t) = 1+ t) sin(t) + x 0 < x < Xt 
' . (1 + t) sin(t) + 2t - x, X < x < 27t, 

and with the same a(x, t) and b(x, t) . 
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The results of smoothing the spectral approximation of U(x, t), with M = 
128 and N = 17, are shown in the tables below. 

CASE I 

Xv = 78 (v + 1/2) 
v equals IU(Xv, 1)-Vm, n(X, 1)1 IU(xv, 1)-RVm'n(Xv, 1)1 

4 1.47 (-3) 2.69 (-8) 

5 1.88 (-3) 2.28 (-8) 

6 2.32 (-3) 2.67 (-8) 

CASE II 

XV = j8 (v + 1/2) 
v equals IU(X1v 1) - Vm ((XI, 1)I IU(x, 1) - RVm1n(xv, 1)1 

4 1.12 (-3) 2.88 (-8) 

5 1.11 (-3) 4.19 (-8) 

6 1.28 (-3) 4.48 (-8) 
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